
FILES AND THE OPEN() AND FILE()

BUILT IN FUNCTION

File access is one of the more important aspects of a language once

you are comfortable with the syntax; there is nothing like the power

of persistent storage to get some real work done.

 How to Open a File

 handle = open(file_name, access_mode = 'r')

The file_name variable contains the string name of the file we wish to

open, and access_mode is either 'r' for read, 'w' for write, or 'a' for

append. Other flags that can be used in the access_mode string

include the '+' for dual read-write access and the 'b' for binary access.

If the mode is not provided, a default of read-only ('r') is used to open

the file.

 If open() is successful, a file object will be returned as the handle

(handle). All succeeding access to this file must go through its file

handle. Once a file object is returned, we then have access to the other

functionality through its methods such as readlines() and close().

Methods are attributes of file objects and must be accessed via the

dotted attribute notation (see the following Core Note).

 Here is some code that prompts the user for the name of a text file,

then opens the file and displays its contents to the screen:

 filename = raw_input('Enter file name: ')

 fobj = open(filename, 'r')

for eachLine in fobj:

 print eachLine,

 fobj.close()

✓ Rather than looping to read and display one line at a

time, our code does something a little different. We

read all lines in one fell swoop, close the file, and

then iterate through the lines of the file. One

advantage to coding this way is that it permits the file

access to complete more quickly. The output and file

access do not have to alternate back and forth

between reading a line and printing a line.

✓ It is cleaner and separates two somewhat unrelated

tasks. The caveat here is the file size. The code above

is reasonable for files with reasonable sizes. Very

large data files may take up too much memory, in

which case you would have to revert back to reading

one line at a time.

✓ The other interesting statement in our code is that we

are again using the comma at the end of the print

statement to suppress the printing of the NEWLINE

character. Why? Because each text line of the file

already contains NEWLINEs at the end of every line.

✓ If we did not suppress the NEWLINE from being

added by print, our display would be double-spaced.

The file() built-in function was recently added to

Python. It is identical to open(), but is named in such

a way to indicate that is a factory function (producing

file objects), similar to how int() produces integers

and dict() results in dictionary objects.

